Protective Role of Trimetazidine Against Neomycin-induced Hair Cell Damage in Zebrafish

نویسندگان

  • Jiwon Chang
  • Gi Jung Im
  • Sung Won Chae
  • Seung Hoon Lee
  • Soon-Young Kwon
  • Hak Hyun Jung
  • Ah-Young Chung
  • Hae-Chul Park
  • June Choi
چکیده

OBJECTIVES Trimetazidine (TMZ) is known to reduce the generation of oxygen-derived free radicals. The objective of the present study was to evaluate the effects of TMZ on neomycin-induced ototoxicity in transgenic zebrafish (Brn3C: EGFP). METHODS Five-day, postfertilization zebrafish larvae were exposed to 125 µM neomycin and one of the following TMZ concentrations for 1 hour: 10 µM, 100 µM, 500 µM, 1,000 µM, 1,500 µM, or 2,000 µM. Hair cells within the neuromasts of the supraorbital (SO1 and SO2), otic (O1), and occipital (OC1) lateral lines were analyzed using fluorescence microscopy and confocal microscopy (n=10). Hair cell survival was calculated as a percentage of hair cells in the control group that were not exposed to neomycin. Ultrastructural changes were evaluated using scanning electron microscopy. RESULTS TMZ protected against neomycin-induced hair cell loss in the neuromasts (TMZ 1,000 µM, 11.2±0.4 cells; 125 µM neomycin only, 4.2±0.5 cells; n=10; P<0.05) and decreased the terminal deoxynucleotidyl transferase (TdT)-mediated dUTP-biotin nick end labeling (TUNEL) reaction. In the ultrastructural analysis, structures of mitochondria and hair cells within the neuromasts were preserved in zebrafish exposed to 125 µM neomycin and 1,000 µM TMZ. CONCLUSION TMZ attenuated neomycin-induced hair cell loss in zebrafish. The results of this study suggest that neomycin induces apoptosis, and that apoptotic cell death can be prevented by treatment with tremetazidine.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sodium Selenite Acts as an Otoprotectant against Neomycin-Induced Hair Cell Damage in a Zebrafish Model

Sodium selenite is a trace element essential for many physiological functions in the body. It is involved in various biological processes; it acts as a cofactor for antioxidant enzymes that protect against free radicals and is reported to limit metal-mediated oxidative DNA damage. In the present study, we investigated the effect of sodium selenite on neomycin ototoxicity in wild-type and transg...

متن کامل

Phenotypic Optimization of Urea-Thiophene Carboxamides To Yield Potent, Well Tolerated, and Orally Active Protective Agents against Aminoglycoside-Induced Hearing Loss.

Hearing loss is a major public health concern with no pharmaceutical intervention for hearing protection or restoration. Using zebrafish neuromast hair cells, a robust model for mammalian auditory and vestibular hair cells, we identified a urea-thiophene carboxamide, 1 (ORC-001), as protective against aminoglycoside antibiotic (AGA)-induced hair cell death. The 50% protection (HC50) concentrati...

متن کامل

Ultrastructural analysis of aminoglycoside-induced hair cell death in the zebrafish lateral line reveals an early mitochondrial response.

Loss of the mechanosensory hair cells in the auditory and vestibular organs leads to hearing and balance deficits. To investigate initial, in vivo events in aminoglycoside-induced hair cell damage, we examined hair cells from the lateral line of the zebrafish, Danio rerio. The mechanosensory lateral line is located externally on the animal and therefore allows direct manipulation and observatio...

متن کامل

Extracellular divalent cations modulate aminoglycoside-induced hair cell death in the zebrafish lateral line.

Aminoglycoside antibiotics cause death of sensory hair cells. Research over the past decade has identified several key players in the intracellular cascade. However, the role of the extracellular environment in aminoglycoside ototoxicity has received comparatively little attention. The present study uses the zebrafish lateral line to demonstrate that extracellular calcium and magnesium ions mod...

متن کامل

Effect of JNK inhibitor SP600125 on hair cell regeneration in zebrafish (Danio rerio) larvae

The c-Jun amino-terminal kinase (JNK) proteins are a subgroup of the mitogen-activated protein kinase family. They play a complex role in cell proliferation, survival, and apoptosis. Here, we report a novel role of JNK signalling in hair cell regeneration. We eliminated hair cells of 5-day post-fertilization zebrafish larvae using neomycin followed by JNK inhibition with SP600125. JNK inhibitio...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2013